Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26849, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463896

ABSTRACT

Natto is a traditional Japanese fermented product consisting of cooked soybeans fermented with Bacillus subtilis var. natto. We assessed three different B. subtilis strains and investigated their impact on product quality aspects, such as microbial quality, textural quality (poly-γ-glutamate strand formation), free amino acids (FAA), and volatile organic compounds (VOCs), but also the vitamin K1, K2 and B1 content, and presence of nattokinase. Using Bayesian contrast analysis, we conclude that the quality attributes were influenced by both the substrate and strain used, without significant differences in bacterial growth between strain or substrate. Overall, all the tested European legumes, except for brown beans, are adequate substrates to produce natto, with comparable or higher qualities compared to the traditional soy. Out of all the tested legumes, red lentils were the most optimal fermentation substrate. They were fermented most consistently, with high concentrations of vitamin K2, VOCs, FAA.

2.
Yeast ; 40(12): 628-639, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37930115

ABSTRACT

Vitamin B1 , also known as thiamine, is an important vitamin that, besides its role in human health, is converted to meat aromas upon exposure to high temperatures. Therefore, it is relevant for the production of vegan meat-like flavours. In this study, we investigated 48 Saccharomyces cerevisiae strains for their thiamine production capacity by measuring the intracellular and extracellular vitamins produced in the thiamine-free minimal medium after 72 h of growth. We found approximately an 8.2-fold difference in overall thiamine yield between the highest and lowest-producing strains. While the highest thiamine yield was 254.6 nmol/L, the highest thiamine-specific productivity was 160.9 nmol/g DW. To assess whether extracellular thiamine was due to leakage caused by cell damage, we monitored membrane permeabilization using propidium iodide (PI) staining and flow cytometry. We found a good correlation between the percentage of extracellular thiamine and PI-stained cells (Spearman's ρ = 0.85). Finally, we compared S. cerevisiae CEN.PK113-7D (wild type [WT]) to three strains evolved in a thiamine-free medium for their thiamine production capacity. On average, we saw an increase in the amount of thiamine produced. One of the evolved strains had a 49% increase in intracellular thiamine-specific productivity and a biomass increase of 20% compared with the WT. This led to a total increase in thiamine yield of 60% in this strain, reaching 208 nmol/L. This study demonstrated that it is possible to achieve thiamine overproduction in S. cerevisiae via strain selection and adaptive laboratory evolution.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Thiamine , Saccharomyces cerevisiae Proteins/metabolism , Vitamins
3.
J Microbiol Methods ; 201: 106561, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36041639

ABSTRACT

Thiamine is an essential vitamin for most living organisms, of which yeasts are a rich nutritional source. In this study we developed a thiamine extraction and determination method to detect thiamine in fresh yeast biomass. The thiamine determination method combines the derivatization of thiamine to a highly fluorescent product, with chromatographic separation (HPLC) and fluorescence detection. The method specifically detects free thiamine (T), thiamine phosphate (TP), and thiamine pyrophosphate (TPP). It has a high sensitivity of 2 ng/ml for TPP and TP, and 1 ng/ml for T, excellent instrumental repeatability, and low day-to-day variation in retention time of the different phosphate forms. We demonstrated the robustness of the method by proving that the fluorescence signals of the derivatised samples are stable for at least 82 h after derivatization, and by showing that the final pH of the samples does not influence the fluorescent response. In addition, we developed and validated a thiamine extraction method consisting of beads beating the fresh yeast biomass in 0.1 M HCl using a lysing matrix composed of 0.1 mm silica spheres. The performance of this method was compared to extraction via heat treatment at 95 °C for 30 min, and a combination of beads beating and heat treatment carried out in different order. We demonstrated that thiamine extraction via beads beating is the only method that prevents the biologically active form thiamine pyrophosphate to be degraded to thiamine phosphate, therefore, the extraction method developed and described in this study is preferred when the different thiamine vitamers need to be detected in their actual proportions. The combination of the extraction via beads beating, the conversion of all vitamers to the thiochrome derivatives, and the separation of these compounds on the reversed phase HPLC with a fluorescence detector, yielded a sensitive, specific, repeatable, and robust method for extraction and determination of vitamin B1 in fresh yeast biomass.


Subject(s)
Saccharomyces cerevisiae , Thiamine Pyrophosphate , Biomass , Chromatography, High Pressure Liquid/methods , Esters , Phosphates , Silicon Dioxide , Thiamine/analysis , Thiamine Monophosphate/analysis , Thiamine Pyrophosphate/analysis , Vitamins
SELECTION OF CITATIONS
SEARCH DETAIL
...